Máster en Data Science e Inteligencia Artificial

Con la colaboración de

Colaboración

DOBLE TITULACIÓN

Colaboración
Colaboración

Máster en Data Science Online

icono de propiedad

Duración:

1 año académico

icono de propiedad

Idioma:

Español

icono de propiedad

Modalidades:

Live Streaming y Online Flexible

Objetivos

La Ciencia de Datos se está convirtiendo en una disciplina clave para que las empresas sean capaces de encontrar ventajas competitivas impensables hace pocos años. En este máster, los estudiantes entenderán la importancia del Big Data para manejar grandes volúmenes de información, utilizarán las principales herramientas del sector, aprenderán a programar modelos de analítica de datos y de IA y conocerán en detalle técnicas avanzadas de Machine Learning y Deep Learning. Al terminar el máster podrán dedicarse profesionalmente en el área del Data Science y a la Inteligencia Artificial.

¿A quién va dirigido este máster?

A todas esas personas interesadas en iniciar una carrera profesional en el campo del Data Science y la Inteligencia Artificial.

Las personas que no tengan conocimientos previos en programación en Python y en R podrán hacer un Prework que les garantizará el nivel requerido para cursar el máster.

Ayudas económicas

Formación bonificable a través de FUNDAE (debe ser coordinado desde tu empresa) o solicita información sobre nuestro programa de becas.

Doble Titulación

Al finalizar la formación, recibirás dos títulos: uno emitido por nuestra Escuela de Negocios (EBIS) y otro por la Universidad de Vitoria-Gasteiz (EUNEIZ).

Certificaciones adicionales incluidas

Al finalizar la formación, además de la doble titulación del máster, tendrás la oportunidad de obtener dos de los certificados más reconocidos en el mercado. Se incluye la preparación, el examen y la certificación en Azure AI Fundamentals (AI-900) y el certificado Harvard ManageMentor® - Leadership, otorgado por Harvard Business Publishing Education.

Avalado por instituciones de prestigio

IBM logo

Elegidos como la mejor escuela de negocios especializada en tecnología

Ranking DondeEstudiar

IBM logo

Galardonados con el distintivo European Excellence Education

Financial Magazine

IBM logo

Primera posición en rankings académicos del sector tecnológico

EUniversidadesPrivadas.com y Financial Magazine

Las mejores empresas también se han formado con nosotros

Deloitte Banco de España Bankinter Microsoft Indra CaixaBank Mapfre Telefonica Allianz Santander Pwc RTVE ABB Naturgy

Modalidades

imagen de modalidad

Modalidad Live Streaming

Descripción: Los alumnos y profesores interactúan a través de una plataforma de videoconferencias. Las grabaciones de las clases estarán disponibles en el campus virtual junto con los demás recursos del máster. Además, los estudiantes podrán solicitar tutorías por videoconferencia individuales bajo demanda.

Tutor personal: Disponible durante todo el curso

Recursos complementarios: Lecturas, presentaciones, libros, manuales, cuestionarios, ejercicios, foros de dudas, repositorio documental, etc.

Interacción con otros alumnos: Durante las clases, en la preparación de los casos prácticos (opcional), en la elaboración del proyecto final (opcional) y por chat grupal/individual en la intranet.

Fecha de inicio y fin: 27 de Marzo de 2025 – 05 de Febrero de 2026

Horarios disponibles: Martes y Jueves de 18:30 a 21:00h Zona Horaria UTC+1 (UTC+2 en verano)

imagen de modalidad

Modalidad Online Flexible

Información: Los alumnos cuentan con acceso a un campus virtual donde encuentran las grabaciones de las clases junto a los demás recursos propios de la formación. Además, se ofrecen tutorías grupales por videoconferencia e individuales bajo demanda para resolver cualquier tipo de consulta.

Tutor personal: Disponible durante todo el curso

Recursos complementarios: Lecturas, presentaciones, libros, manuales, cuestionarios, ejercicios, foros de dudas, repositorio documental, etc.

Interacción con otros alumnos: Durante las tutorías, en la preparación de los casos prácticos (opcional), en la elaboración del proyecto final (opcional) y por chat grupal/individual en la intranet.

Fecha de inicio: Inicio flexible

Duración: 1 año académico

Dedicación: Flexible

Contenido del Máster en Data Science e Inteligencia Artificial

MÓDULO I. PROGRAMACIÓN Y COMPUTACIÓN PARA LA CIENCIA DE DATOS

Tema 1 - Programación Python

En esta primera asignatura, se abordarán los fundamentos de la programación en Python, un lenguaje esencial para el análisis de datos. Desde la instalación del software hasta la creación de funciones y estructuras de datos, este módulo te proporcionará las herramientas necesarias para trabajar con datos de manera eficiente. El contenido incluye:

    • Instalación

    • Herramientas básicas

    • Jupyter Notebook

    • Tipos de datos

    • Estructuras condicionales

    • Estructuras iterativas

    • Funciones

    • Estructuras de datos

    • Programación vectorial con Numpy

    • Manipulación de datos con Pandas

    • Graficación básica con Matplotlib

Tema 2 - Programación en R

En este tema, exploraremos los fundamentos de la programación en R, otro lenguaje ampliamente utilizado en el ámbito del Data Science. Con R, podrás realizar análisis estadísticos complejos, crear visualizaciones atractivas y trabajar con una variedad de tipos de datos. Los temas desarrollados incluirán:

    • Instalación

    • Herramientas básicas

    • R Studio

    • Tipos de datos

    • Estructuras condicionales

    • Estructuras iterativas

    • Funciones

    • Estructuras de datos

    • Uso de apply, lapply y sapply

    • Dataframes

    • El universo Tidyverse

    • Manipulación de datos con dplyr

    • Graficación básica con ggplot2

MÓDULO II. MATEMÁTICAS Y ESTADÍSTICA PARA LA CIENCIA DE DATOS

Tema 3 - Fundamentos Estadísticos

La estadística constituye uno de los pilares fundamentales sobre los cuales se sustenta la estructura del Data Science. En este tema, expondremos los conceptos estadísticos esenciales que resultan primordiales para la interpretación y el análisis efectivo de datos. Mediante la comprensión de estos fundamentos, adquirirás la capacidad de discernir patrones, identificar correlaciones significativas y extraer información valiosa de conjuntos de datos complejos. Este conocimiento estadístico proporciona una base sólida para el desarrollo de habilidades analíticas y la toma de decisiones fundamentadas en el ámbito del Data Science.

    • Estadística descriptiva

    • Probabilidad

    • Variables aleatorias

    • Covarianza y correlación

    • Muestra y población

    • Distribuciones normales

    • Distribuciones de Poisson

    • Otro tipo de distribuciones

Tema 4 - Estadística Aplicada a la Ciencia de Datos

Profundizaremos en la aplicación de la estadística en el ámbito del Data Science. Explorarás la realización de pruebas estadísticas, la interpretación de resultados y la utilización de técnicas para extraer información relevante de los datos. Durante el desarrollo de la asignatura, se enfatizará en cómo la estadística se convierte en una herramienta vital para descubrir patrones, tendencias y relaciones significativas dentro de conjuntos de datos complejos. Se abordarán casos prácticos que ilustran la aplicación de los conceptos estadísticos en la resolución de problemas del mundo real en el ámbito del Data Science.

    • Principales tests estadísticos

    • significancia estadística

    • P-value

    • Interpretación de las principales métricas

    • Principal Component Analysis (PCA)

    • Estadística inferencial

    • Regresiones lineales

    • Regresiones logísticas

MÓDULO III. BIG DATA

Tema 5 - Fundamentos del Big Data

En esta asignatura nos adentraremos en el mundo del Big Data, abordando la gestión y el análisis de vastos conjuntos de datos. Exploraremos los desafíos y oportunidades inherentes al Big Data, así como las tecnologías fundamentales para su tratamiento. Al comprender las implicaciones y aplicaciones del Big Data, lestarás preparado para enfrentarte a los retos que plantea la era de la información masiva y aprovechar las oportunidades que ofrece este vasto campo de estudio y aplicación.

    • La necesidad del Big Data

    • Introducción al Big Data

    • Qué no es el Big Data

    • Desafíos del Big Data

    • Fuentes de datos

    • Tipos de datos

    • Volumen, Velocidad y Variedad

    • Tecnologías de Almacenamiento

Tema 6 - Bases de Datos SQL

Las Bases de Datos Relacionales, también conocidas como Bases de Datos SQL, han sido durante mucho tiempo el modelo de sistema de almacenamiento por excelencia. Este tema aborda el diseño, implementación y gestión de bases de datos relacionales utilizando SQL (Structured Query Language). Los estudiantes aprenderán a estructurar datos en tablas, establecer relaciones entre ellos y realizar consultas complejas para la recuperación y manipulación de información. A través de ejemplos prácticos y estudios de casos, se explorará cómo las bases de datos SQL son fundamentales para garantizar la integridad y la eficiencia en el manejo de datos en proyectos de ciencia de datos.

    • Introducción a las Bases de Datos Relacionales

    • Relaciones entre Tablas

    • Diseño de modelos de Bases de Datos

    • Lenguaje SQL

    • Integridad de los Datos

Tema 7 - Bases de Datos No SQL

Este tema se centra en el estudio y la aplicación de bases de datos NoSQL, fundamentales para el manejo y análisis de grandes volúmenes de datos en diversas formas. A medida que las organizaciones generan y procesan datos a un ritmo acelerado, las bases de datos NoSQL emergen como una solución eficaz para almacenar, gestionar y recuperar información no estructurada y semiestructurada. Los estudiantes explorarán los diferentes tipos de bases de datos NoSQL, sus arquitecturas y cómo se integran en el ecosistema de ciencia de datos.

    • Introducción a NoSQL

    • Modelos de Datos NoSQL

    • Arquitectura y Diseño

    • Escalabilidad y Rendimiento

Tema 8 - Bases de Datos Avanzadas

En este tema profundizaremos más en el uso de las Bases de Datos. Veremos cómo hay un amplio abanico de de posibilidades que hay que saber distinguir en qué caso se adecúan a nuestras necesidades.

    • Indexación avanzada

    • Particionamiento de datos

    • Optimización de rendimiento

    • Alta disponibilidad

    • Tolerancia a fallos

Tema 9 - Arquitecturas

En esta sección, exploraremos las principales arquitecturas de los sistemas Big Data, comprendiendo cómo se almacenan y procesan los vastos conjuntos de datos en estas plataformas. Se abordará en detalle la estructura y el funcionamiento de estas arquitecturas, así como las tecnologías clave que las respaldan. Al comprender estos aspectos fundamentales, dispondrás del conocimiento para enfrentarte a los desafíos y aprovechar las oportunidades que ofrece el entorno del Big Data en la actualidad.

    • Sistemas de almacenamiento distribuidos

    • Sistemas de almacenamiento en la nube

    • Bases de Datos NoSQL

    • Apache Hadoop

    • Cloudera

    • Apache YARN

    • MapReduce

    • Orquestación de procesos

Tema 10 - Cloud Computing

El Cloud Computing ha supuesto una revolución en la forma en que las empresas almacenan, procesan y acceden a los datos. En este tema, exploraremos los conceptos fundamentales del Cloud Computing,el por qué de su importancia en la ciencia de datos y sus diversas aplicaciones.

    • Definición de Cloud Computing

    • Modelos de servicio: IaaS, PaaS, SaaS

    • Proveedores de Cloud

    • Beneficios y desafíos

Tema 11 - Principales Herramientas

En el mundo real, los datos son diversos en términos de calidad, formato y estructura. Por lo tanto, es crucial saber identificar y manejar adecuadamente si nuestros datos son estructurados, no estructurados o semiestructurados. Aprenderás a trabajar con cada tipo de dato de manera eficiente, lo que te permitirá comprender las características únicas de cada uno de ellos y aplicar las estrategias adecuadas para su procesamiento y análisis. Al dominar estas habilidades, estarás mejor preparado para enfrentar los desafíos y aprovechar las oportunidades que presentan los datos del mundo real en el ámbito del análisis de datos y el Data Science.

    • Hadoop Ecosystem

    • Apache Hive

    • Apache Spark

    • PySpark

    • Apache Airflow

    • Apache Kafka

MÓDULO IV. OBTENCIÓN, PREPARACIÓN Y ALMACENAMIENTO DE DATOS

Tema 12 - Naturaleza de los Datos

En el mundo real, los datos son diversos en términos de calidad, formato y estructura. Por lo tanto, es crucial saber identificar y manejar adecuadamente si nuestros datos son estructurados, no estructurados o semiestructurados. Los estudiantes aprenderán a trabajar con cada tipo de dato de manera eficiente, lo que les permitirá comprender las características únicas de cada uno y aplicar las estrategias adecuadas para su procesamiento y análisis. Al dominar estas habilidades, los estudiantes estarán mejor preparados para enfrentar los desafíos y aprovechar las oportunidades que presentan los datos del mundo real en el ámbito del análisis de datos y el Data Science.

    • Principales tipos atómicos

    • Datos cualitativos y cuantitativos

    • Datos continuos y discretos

    • Datos estructurados y no estructurados

    • Datos temporales

Tema 13 - Técnicas de Recogidas de Datos

La capacidad de confeccionar conjuntos de datos propios es una habilidad fundamental para expandir la capacidad como Data Scientist. En este tema, se exploran las diversas técnicas para recopilar datos, como el uso de APIs, el web scraping y la extracción de datos de redes sociales. Aprenderás a evaluar y seleccionar la técnica más apropiada para cada caso, lo que te permitirá obtener datos relevantes y de alta calidad para sus análisis y proyectos de Data Science.

    • Orígenes de los datos

    • Redes sociales

    • Web Scraping

    • Datos en tiempo real

    • Tendencias en la obtención de datos

Tema 14 - Preprocesamiento y Data Quality

El preprocesamiento de los datos se considera una de las etapas más importantes y laboriosas en una Pipeline de Ciencia de Datos. Te enseñaremos a preparar los datos para su análisis, incluyendo la limpieza, la transformación y la normalización. Además, aprenderás a evaluar la calidad de los datos y a corregir errores. Esta habilidad es crucial para garantizar la fiabilidad y la precisión de los análisis y modelos de Machine Learning.

    • Calidad del dato

    • Análisis exploratorio de datos

    • Detección y tratamiento de outliers

    • Tratamiento de valores perdidos

    • Tratamiento de problemas desbalanceados

    • Transformación de variables

    • Normalización de variables numéricas

MÓDULO V. ANALÍTICA AVANZADA E INTELIGENCIA ARTIFICIAL

Tema 15 - Analítica Avanzada de Datos

En este tema se brinda un contexto sobre los orígenes de la Analítica Avanzada, los desafíos iniciales que enfrentaba y su evolución hasta el día de hoy. Se exploran los fundamentos históricos y conceptuales que han dado forma al campo de la Analítica Avanzada, así como las innovaciones tecnológicas y metodológicas que han permitido su desarrollo y expansión.

    • Introducción a la Analítica Avanzada

    • Extracción del conocimiento

    • Procesos de analítica avanzada de datos

    • Principales aplicaciones

Tema 16 - Minería de Datos

Descubrirás los diferentes tipos de problemas a los que puedes enfrentarte, así como sus principales características y cómo abordarlos. Aprenderás a validar la calidad de sus modelos desde un enfoque crítico y objetivo, lo que te permitirá evaluar la eficacia y la precisión de sus resultados. Mediante el análisis y la evaluación de la bondad de los modelos, estarás mejor preparado para tomar decisiones informadas y optimizar sus procesos de análisis de datos y modelado predictivo.

    • Problemas supervisados

    • Problemas no supervisados

    • Problemas semi supervisados

    • Inferencia vs predicción

    • Overfitting vs Underfitting

    • Bias vs Variance

    • Validación de modelos

Tema 17 - Machine Learning

Este tema aborda de manera práctica las principales técnicas de Machine Learning, desde los fundamentos que sustentan esta área hasta los algoritmos que actualmente representan el estado del arte. Exploraremos las metodologías esenciales de aprendizaje automático, así como los algoritmos más avanzados utilizados en una variedad de aplicaciones. A través de ejercicios prácticos y estudios de casos, se fomentará la comprensión profunda de cómo aplicar estas técnicas para resolver problemas del mundo real y aprovechar al máximo el potencial del Machine Learning en diversas áreas y sectores.

    • Introducción al machine learning

    • Técnicas de clasificación

    • Técnicas de regresión

    • Técnicas de clustering

    • Algoritmos avanzados

    • Estado del arte

Tema 18 - Deep Learning

El Deep Learning es un campo que está transformando los límites de las capacidades de la Inteligencia Artificial. En este tema, aprenderás de manera práctica los fundamentos que impulsan el funcionamiento de las Redes Neuronales, así como sus evoluciones más avanzadas. Se explorarán los principios subyacentes de las redes neuronales y se profundizará en las técnicas y conceptos avanzados del Deep Learning. A través de ejercicios prácticos y proyectos aplicados, adquirirás las habilidades necesarias para diseñar, implementar y optimizar modelos de Deep Learning para una variedad de aplicaciones en el mundo real.

    • Intuición detrás del Deep Learning

    • Redes Neuronales Simples

    • Redes Neuronales Recurrentes

    • Redes Neuronales Convolucionales

    • Transformers

    • Redes Neuronales GenerativasAdversarias

MÓDULO VI. NARRACIÓN BASADA EN EL DATOS, VISUALIZACIÓN AVANZADA & STORYTELLING

Tema 19 - Visualización Avanzada de Datos

En este tema, entenderás que no solo es crucial dominar la creación de modelos avanzados capaces de extraer información valiosa, sino que también es fundamental saber comunicar este conocimiento a través de visualizaciones de datos atractivas e informativas. Las visualizaciones efectivas no solo hacen que los datos sean más comprensibles, sino que también destacan patrones, tendencias y relaciones importantes de manera clara y accesible.

    • Gráficos avanzados

    • Visualización multivariable

    • Visualización de texto

    • Visualización de series temporales

    • Diseño y estética

    • Consejos para realizar mejores gráficos

Tema 20 - Business Intelligence y Cuadros de Mando

A través de ejemplos prácticos y casos de estudio, desarrollarás habilidades para identificar patrones, tendencias y oportunidades de mejora en los datos empresariales, lo que te permitirá tomar decisiones informadas y estratégicas para el éxito organizacional.

    • Introducción al Business Intelligence

    • Cálculo de métricas clave

    • Cuadros de mando

    • Funciones y beneficios

    • KPI

    • Componentes avanzados

    • Tableau

    • Power BI

Tema 21 - Tableau

Tableau es una poderosa herramienta de visualización de datos que permite crear visualizaciones interactivas y paneles de control dinámicos a partir de conjuntos de datos complejos. En este tema, introduciremos los conceptos básicos de Tableau y cómo utilizarlo para analizar y comunicar datos de manera efectiva.

    • Interfaz

    • Ventajas y desventajas

    • Tipos de visualizaciones

    • Creación de dashboards

    • Importación de datos

    • Construcción de visualizaciones

Tema 22 - Power BI

Power BI es una plataforma de análisis de datos de Microsoft que permite a los usuarios visualizar y compartir datos de manera intuitiva y efectiva. En este tema, explicaremos los conceptos básicos de Power BI y cómo utilizarlo para crear informes interactivos, paneles de control dinámicos y análisis de datos avanzados.

    • Interfaz

    • Ventajas y desventajas

    • Tipos de visualizaciones

    • Creación de dashboards

    • Importación de datos

    • Construcción de visualizaciones

Tema 23 - Storytelling

En este tema, descubrirás cómo comunicar los resultados de sus análisis de datos de manera efectiva. Aprenderás a crear historias convincentes que transmitan tus ideas a la audiencia de manera clara y concisa. Se explorarán técnicas para estructurar y presentar la información de manera coherente y persuasiva, utilizando visualizaciones, narrativas y ejemplos prácticos.

    • Definición

    • La importancia del Storytelling

    • Estructura narrativa

    • Informes

    • Consejos

    • Selección de datos significativos

    • Identificación de audiencia

    • Elaboración de un Storytelling efectivo

MÓDULO VII. REGULACIONES Y ÉTICA

Tema 24 - La Legislación en la Ciencia de Datos

Con los avances acelerados de la Inteligencia Artificial, la legislación en este ámbito está adquiriendo una relevancia cada vez mayor. En este tema, se presentan las bases que justifican la importancia de esta área y se analiza el estado actual de la legislación sobre Inteligencia Artificial. Se exploran los desafíos éticos, legales y sociales que surgen con el desarrollo y la implementación de sistemas de IA, así como las regulaciones y políticas en evolución destinadas a abordarlos.

    • Privacidad

    • Protección de datos y LOPD

    • Tratamiento de datos

    • Conservación y borrado de datos

    • Ejercicio de derechos

Tema 25 - Sostenibilidad

El despunte de la Inteligencia Artificial está teniendo como consecuencia el uso cada vez más intensivo de recursos computacionales. Esto, junto a otros factores, hace que la sostenibilidad sea un tema cada vez más a tener en cuenta en el mundo del Data Science.

    • Importancia de la sostenibilidad

    • Estado actual

    • Desafíos

Tema 26 - Ética en la Inteligencia Artificial

En este tema, aprenderás sobre los principales desafíos éticos a los que nos enfrentamos en el desarrollo y la implementación de la Inteligencia Artificial. Se explorarán cuestiones como la privacidad, el sesgo algorítmico, la transparencia y la responsabilidad en el diseño y uso de sistemas de IA. Al comprender estos retos éticos, estarás mejor preparado para abogar por prácticas éticas y responsables en el desarrollo y aplicación de la Inteligencia Artificial, contribuyendo así a un futuro más justo y equitativo para todos.

    • Explicabilidad de la Inteligencia Artificial

    • Bias y Fairness

    • Ética de los Datos

    • Exploración de escenarios negativos

    • Gobernanza y cumplimiento

    • Sostenibilidad

MÓDULO VIII. PLANIFICACIÓN Y DIRECCIÓN DE PROYECTOS DE CIENCIA DE DATOS E IA

Tema 27 - Aplicaciones del Data Science y la IA

Aprenderás cómo estas tecnologías pueden beneficiar a las empresas al mejorar sus procesos y facilitar la toma de decisiones fundamentadas. Se analizarán casos de estudio y ejemplos prácticos que ilustran cómo el Data Science y la Inteligencia Artificial pueden ser aplicados en sectores como la salud, el comercio electrónico, las finanzas, la manufactura y muchos otros.

    • Situación actual y nivel de adopción

    • Evolución del sector

    • Aplicaciones en los diferentes sectores

    • El futuro de la industria

Tema 28 - Planificación de Proyectos de Inteligencia Artificial

En este tema, se abordará el ciclo de vida para la planificación y ejecución de proyectos de Inteligencia Artificial. Aprenderás a definir los objetivos del proyecto, seleccionar las herramientas adecuadas y gestionar el equipo de trabajo de manera efectiva. Se explorarán las diferentes etapas del ciclo de vida del proyecto, desde la concepción hasta la implementación y el mantenimiento, centrándose en las mejores prácticas para garantizar el éxito del proyecto.

    • Diseño de soluciones

    • Selección y gestión de recursos

    • Presupuestos

    • Planificación

    • Ejecución

    • Control y seguimiento

    • Cierre de proyecto

    • Experiencias reales

Tema 29 - Metodologías Ágiles

Aprenderás a utilizar metodologías como Scrum y Kanban para trabajar de forma eficiente y adaptable. Se explorarán los principios y prácticas fundamentales de estas metodologías, así como su aplicación en proyectos de Inteligencia Artificial. Adquirirás habilidades para gestionar equipos, establecer prioridades y adaptarse a los cambios de manera ágil y efectiva, lo que te permitirá llevar a cabo proyectos de IA de manera exitosa en entornos dinámicos y exigentes.

    • Introducción a las metodologías Ágiles

    • Ventajas y limitaciones

    • Kanban

    • Scrum

    • Adopción de las metodologías Ágiles

Docentes del máster

imagen de docente
logo de compañía

Jordi Escayola

  • Director global de análisis avanzado, inteligencia artificial y ciencia de datos en Sanofi
imagen de docente
logo de compañía

Ignacio Peis Aznarte

  • Investigador postdoctoral en la Universidad Técnica de Dinamarca
imagen de docente
logo de compañía

David Muñoz Quilez

  • M365 & Cloud Technology Consultant en Microsoft
imagen de docente
logo de compañía

Monica Calleja

  • Data & AI, Cloud Solution Architect en Microsoft
imagen de docente
logo de compañía

Jairo Ferrero Garrido

  • Analista de Riesgos Cuantitativos en BBVA
imagen de docente
logo de compañía

Paula Muñoz Lago

  • Data Engineer en Santander Global T&O
imagen de docente
logo de compañía

David Corral Plaza

  • Ingeniero del Software Senior en Xebia Functional

Mucho más que formación

FORMACIÓN DE POR VIDA

Se espera un rápido avance en las tecnologías digitales. Por esta razón, los estudiantes de la escuela disfrutarán de acceso continuo a actualizaciones y novedades de manera indefinida.

NETWORKING CONTINUO

Nuestro canal privado conecta directamente a todos los antiguos alumnos, docentes y empresas para que puedan comunicarse fácilmente. También se organizan eventos virtuales y presenciales para la comunidad.

BOLSA DE TRABAJO Y PRÁCTICAS

Gracias a nuestros acuerdos estratégicos, podemos brindar emocionantes oportunidades de empleo y la opción de realizar prácticas laborales, ya sea durante el curso o después de su finalización.

ACELERADORA

Apoyamos a los estudiantes en la transformación de sus proyectos finales de máster en startups. Ofrecemos mentores, acceso a inversores y la colaboración de desarrolladores para la creación del producto mínimo viable.

ITINERARIO IMPULSA: Formación y Certificados para continuar con tu desarrollo profesional

En EBIS estamos comprometidos con el crecimiento profesional de nuestros estudiantes incluso después de terminar el máster. Por ello, les damos acceso antes, durante y hasta un año después de finalizar los estudios a un conjunto de formaciones y certificados profesionales con alta demanda en el mercado laboral.

Imagen Formacion
SOLICITAR INFORMACIÓN
MÁSTERES DESTACADOS

Preguntas frecuentes

¿Es necesario tener experiencia previa en programación o matemáticas avanzadas?

No es necesario tener experiencia previa en programación ni estadística. El máster incluye un módulo de Prework, ideal para esos estudiantes que no disponen de conocimientos previos en estas áreas, que les permitirá consolidar una base de conocimientos en programación Python, matemáticas y estadística que les resultirá muy útil para poder seguir el máster de forma adecuada.

¿Qué salidas laborales ofrece el máster en Data Science e Inteligencia Artificial?

Los graduados pueden acceder a roles como Data Scientist, Data Analyst, Ingeniero de Machine Learning, Consultor de Inteligencia Artificial, y otros puestos relacionados con el análisis y la explotación de datos en diversos sectores como banca, salud, retail, y tecnología.

¿Cómo es el soporte académico durante el máster?

Los estudiantes cuentan con tutorías grupales recurrentes en el metaverso de la escuela y tutorías individuales bajo demanda (sin límite) por videoconferencia, lo que asegura un acompañamiento personalizado y adaptado a las necesidades de cada alumno. Además, tienen acceso a un foro de dudas en el que el tutor responderá a cualquier consulta, brindando un soporte directo y continuo. Las consultas también pueden realizarse por correo electrónico en cualquier momento, y el soporte técnico está disponible de forma constante para garantizar que la experiencia de aprendizaje sea fluida y sin interrupciones.

¿EBIS ofrece certificaciones complementarias al finalizar el máster?

Al finalizar el máster, además de obtener la doble titulación en Data Science e Inteligencia Artificial, emitida por EBIS y la Universidad de Vitoria-Gasteiz (EUNEIZ), los estudiantes también reciben certificaciones adicionales. Durante el programa, tienen la oportunidad de obtener el certificado de Microsoft en Azure AI Fundamentals y el certificado en liderazgo otorgado por Harvard Business Publishing Education (Harvard ManageMentor® - Leadership). Además, se ofrecen formaciones y certificados complementarios que los estudiantes podrán realizar una vez concluido el máster, permitiéndoles ampliar su perfil profesional en las áreas que más les interesen.

¿Qué tipo de proyectos prácticos se desarrollan durante el máster?

A lo largo del máster, los estudiantes pondrán a prueba continuamente los nuevos conocimientos adquiridos mediante proyectos prácticos. Estos ejercicios están diseñados para simular situaciones reales en las que aplican herramientas de análisis de datos e inteligencia artificial. Algunos ejemplos de estos proyectos incluyen la predicción del comportamiento del cliente, el análisis de grandes volúmenes de datos, el reconocimiento de imágenes, y la creación de sistemas de recomendación. Esta parte práctica intensiva permite a los estudiantes adquirir experiencia directa en resolver problemas que enfrentan las empresas en la actualidad.

¿Qué diferencia al Máster en Data Science de EBIS de otros programas similares?

El Máster en Data Science de EBIS se distingue por su enfoque altamente práctico, con proyectos reales que permiten a los estudiantes aplicar lo aprendido a problemas actuales de la industria. Las sesiones incluyen una combinación de enseñanza teórica sólida y una amplia práctica, donde los estudiantes trabajan de forma activa en el desarrollo de proyectos y casos de estudio que simulan escenarios del mundo real. Además, el programa cuenta con profesores que son especialistas en las materias que imparten y que trabajan en algunas de las empresas más reconocidas del sector, como Microsoft, IBM, Google y Deloitte. Esta estructura asegura que los estudiantes no solo adquieran conocimientos, sino que los apliquen continuamente, preparándolos de forma integral para enfrentar los retos más actuales en Data Science e Inteligencia Artificial.

banner fundacion estatal

Centro inscrito en el Registro Estatal de Entidades de Formación en virtud de la ley 30/2015

EBIS EDUCATION SL, B67370601© 2024 EBIS Business Techschool, C. Agustín Millares, 18, 35001 Las Palmas de Gran Canaria